
Self-avoiding walks on self-similar structures: finite versus infinite ramification

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 8029

(http://iopscience.iop.org/0305-4470/35/38/306)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 02/06/2010 at 10:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 8029–8041 PII: S0305-4470(02)37253-6

Self-avoiding walks on self-similar structures: finite
versus infinite ramification

Anke Ordemann1, Markus Porto2 and H Eduardo Roman3

1 Department of Physics and Astronomy, University of Missouri at St Louis, 8001 Natural Bridge
Road, St Louis, MO 63121-4499, USA
2 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden,
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Abstract
Self-avoiding walks (SAWs) generated by exact enumeration techniques are
studied on the Sierpinski carpet (d = 2) and on the Sierpinski sponge (d = 3)

(also called Sierpinski square lattices). A detailed comparison of the results
for SAWs on these infinitely ramified fractals to SAWs on finitely ramified
Sierpinski gaskets (Sierpinski triangular lattices), on regular lattices, and on
the incipient percolation cluster is done, providing insight into the behaviour of
SAWs on ordered and disordered structures. The SAWs on Sierpinski square
lattices are found to display a kind of intermediate behaviour, sharing aspects
of both SAWs on ordered and on fractal structures. As a consequence, a des
Cloizeaux relation does not seem to hold for this structure, as opposed to its
validity for SAWs on regular lattices, on Sierpinski triangular lattices and on
the incipient percolation cluster.

PACS numbers: 05.40.−a, 61.41.+e, 61.43.−j

1. Introduction

Linear polymers made of similar monomer units in a diluted solution display only short-range
(repulsive) interactions if the solvent is able to screen all long-range forces between them.
In such a good solvent, the linear chain can be accurately modelled by a self-avoiding walk
(SAW) (see [1–3] for a comprehensive review). SAWs are customarily studied on a lattice, for
which many statistical properties are known so far (cf the above references). Some exponents
characterizing the SAWs have even been established in exact form. For example, the Flory
relation ν = 3/(d + 2) [4] for the exponent ν, describing the scaling behaviour of the polymers’
radius of gyration as a function of the number of monomers, has very recently been proved
by Hueter [5] to be exact for SAWs in d = 2 and, furthermore, been rigorously generalized
to ν = max{1/2, 1/4 + 1/d} valid for any dimension d � 2 (correcting, for SAWs, the
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approximate Flory result ν = 3/5 in d = 3 to the exact value ν = 7/12). Furthermore, many
analytical relations between exponents are known [3], some of which are exact, others being
conjectures or based on mean-field or scaling arguments. Together, these results provide a
well-established framework to understand SAWs on regular lattices.

However, much less is known in the case of linear polymers embedded in disordered
media. Typical examples of models studied so far include SAWs on the incipient percolation
cluster [6–8], for which the exponents are known only numerically. These values are now
established with quite high precision, and even some relations between them have been
conjectured. For example, the so-called des Cloizeaux relation, first established for SAWs on
regular lattices [9], has recently been generalized to SAWs on the incipient percolation cluster
[10]. Despite these achievements, a full understanding of linear polymers in disordered media
is still lacking.

For a better understanding of polymers in disordered media it is helpful to study SAWs on
deterministic fractals. Here, results of renormalization group (RG) techniques are available,
for example for Sierpinski gaskets [11, 12], hereafter denoted as Sierpinski triangular lattices
for simplicity. However, these RG techniques are only applicable for finitely ramified structures
such as the Sierpinski triangular lattices. For infinitely ramified structures, there is no RG result
possible, and one has to rely on numerically evaluating SAWs on these fractals. Finite and
infinite ramifications refer to the number of cut operations which are required to disconnect
any given subset of the structure [13, 14]. For instance, for Sierpinski triangular lattices one
needs to cut a finite number of bonds to do so, the upper limit of which is independent of the
chosen subset.

The question therefore emerges of how do SAWs behave on such infinitely ramified
fractals, and whether their behaviour differs from the case of finitely ramified structures.
Good candidates to answer this quest are the so-called Sierpinski carpets (in d = 2) and
Sierpinski sponges (in d = 3) [15–17]. For simplicity, these structures are summarized
hereafter as Sierpinski square lattices.

There exist different versions of Sierpinski square lattices. These are usually distinguished
by two integer numbers (n, k), where n is the length of the initiator and k refers to the number
of subunits not present in the generator. Consequently, this means that nd − k subunits are
present, so that the fractal dimension becomes

dS
f = ln(nd − k)

ln n
. (1)

Even after specifying (n, k), there is still the degree of freedom of which k out of nd subunits
are not present. This is quantified by the so-called lacunarity, which is a measure of the failure
of a given fractal to be translationally invariant [14]. For our purposes, we choose the most
common and symmetric (small lacunarity) configuration with (n, k) = (3, 1) in d = 2 (the
central subunit is not present) and (n, k) = (3, 7) in d = 3 (the central subunit and its six
nearest neighbour subunits are not present). An example of such a structure for d = 2 is given
in figure 1. The critical exponents of SAWs are expected to depend both on the values of
(n, k) and on the lacunarity, for example in more asymmetric (increased lacunarity) cases ν is
known to be larger [15, 17].

In this paper we study SAWs on these Sierpinski square lattices in d = 2 and d = 3
using exact enumeration of all SAWs of length N. By doing this, we can draw conclusions
regarding the role ramification plays on the statistical properties of SAWs. In particular,
one of our aims is to elucidate whether a des Cloizeaux relation holds for infinitely ramified
deterministic fractals. For completeness, we briefly review here previous results for SAWs
on Sierpinski triangular lattices, as well as on regular lattices and on the incipient percolation
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Figure 1. Illustration of the two-dimensional Sierpinski square lattice (also referred to as the
Sierpinski carpet, corresponding to (n, k) = (3, 1), see text) as obtained after the second iteration.
The sites available to the SAW are shown as squares and the inter-connecting bonds are shown as
lines.

cluster. Our calculations indicate that the behaviour of SAWs on Sierpinski square lattices is
somehow intermediate between SAWs on regular lattices and on Sierpinski triangle lattices
(see discussion in section 4).

The paper is organized as follows: in section 2 we discuss the expected scaling behaviours
for the mean end-to-end chemical distance of the SAWs after N steps, the scaling forms of
the probability distribution function (PDF) PS(�,N), and the total number CN,S of SAWs of
length N. In section 3, we discuss the numerical procedure employed and report our exact
enumeration results for the end-to-end distance (section 3.1), the PDF (section 3.2), and the
total number of SAW configurations (section 3.3). Finally, in section 4, we summarize and
discuss our main results and give our concluding remarks.

2. Theoretical results

To characterize the spatial extent of SAWs on a given structure, such as a Sierpinski square
lattice, let us consider the topological end-to-end distance � after N steps of the walk. Here
we choose to study the topological or chemical distance � over the Euclidean distance r due to
its numerical convenience (note that for Sierpinski square lattices, � and r are proportional to
each other, r ∼ �). By averaging over all possible walks starting at a given lattice point (using
exact enumeration techniques) the mean end-to-end chemical distance �(N) is obtained. The
latter is expected to scale as

�(N) ∼ NνS (2)

valid for N � 1, which defines the critical exponent νS. To obtain more detailed structural
information of the SAWs, one can determine the probability PS(�,N) d� that a walk of length
N has an end-to-end distance in the interval between � and � + d�. The corresponding PDF
PS(�,N) is expected to obey the scaling form

PS(�,N) ∼ 1

�
FS

(
�

�(N)

)
(3)
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where the scaling function FS(x) is expected to behave as

FS(x) =
{

xgS
1 +dS

f for x � 1

xgS
2 +dS

f exp[−cSx
δS ] for x � 1

(4)

and PS(�,N) is normalized according to
∫

PS(�,N) d� = 1.
Similarly, as for SAWs on regular lattices [18] and on other fractal structures such as

Sierpinski triangular lattices [19] and the incipient percolation cluster [8, 10], the exponent δS

is believed to be given by

δS = 1

1 − νS
(5)

while the remaining exponents gS
1 and gS

2 are still unknown. For regular lattices, the
corresponding exponent g1 is given by the des Cloizeaux relation [9]

g1 = γ − 1

ν
(6)

where the critical exponent γ , describing the total number of SAWs of length N, is denoted as
the enhancement exponent (see equation (9) below). For SAWs on the incipient percolation
cluster, the modified form (in the Euclidean metric)

gr
1 = γ1 − 1

νr

+
βperc

νperc
(7)

denoted as the generalized des Cloizeaux relation [10], describes the numerical results very
well. Here, βperc and νperc are the usual critical percolation exponents. The second term has its
origin in the disordered nature of the incipient percolation cluster and should not be present
for SAWs on deterministic fractals [10]. This conjecture was recently confirmed for SAWs on
Sierpinski triangular lattices, for which the simple generalization of equation (6),

gS′
1 = γ ′

S − 1

ν ′
S

(8)

is in very good accordance with the numerical values [19] (ticked quantities such as gS′
1 , γ ′

S
and ν ′

S refer in the following to the corresponding exponents on Sierpinski triangular lattices).
However, as the present study shows, a simple des Cloizeaux relation in the form of
equation (8), gS

1 = (γS − 1)/νS, does not hold for Sierpinski square lattices (see the discussion
in section 4). Note that only for regular lattices is there an analytical estimate for the exponent
g2, g2 = δ[d(ν − 1/2) − (γ − 1)] [20], whereas such a relation is not known for SAWs on
fractal structures.

The enhancement exponent γS is related to the total number CN,S of SAW configurations
of length N on the Sierpinski square lattices by

CN,S ∼ µN
S NγS−1 (9)

valid for N � 1, where µS is the effective coordination number of Sierpinski square lattices.
For SAWs on regular lattices and on the incipient percolation cluster, the corresponding
coordination numbers µ and µ(p) are related by [21]

µ(p) = pµ (10)

where p � pc is the percolation occupation probability. It should be emphasized here that
the validity of equation (10), for the special case of SAWs on the incipient percolation cluster
p = pc, i.e. µ(pc) = pcµ, has been conjectured in [21]. Due to the multifractal nature of
SAWs on the incipient percolation cluster [8, 22], however, one needs to study the generalized
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coordination numbers µq(pc), which are related to the (configurational averaged) moments

of order q of CN,
〈
C

q

N

〉1/q
. These µq(pc) turn out to vary continuously with q, indicating, in

other words, that the results depend on the averaging procedure employed. It has been realized
only recently [8] that equation (10) holds for p = pc in the form µ1 = pcµ, i.e. for the first
moment q = 1 of the coordination number, while other moments µq(pc), q �= 1, do not obey
equation (10).

One might argue that the validity of equation (10) has its roots in the fact that for SAWs
on the percolation clusters, as compared to SAWs on regular lattices, the reduced connectivity
of the percolation cluster quantified by the probability p is the dominant issue. Concerning
a possible relation between the coordination numbers µ and µS for SAWs on regular and on
Sierpinski square lattices, respectively, one might argue somewhat differently by assuming that
it is not the connectivity of the underlying substrate which is important, but rather the spatial
restrictions quantified by the fractal dimension dS

f of the Sierpinski square lattice. Hence, a
relation

µS = dS
f

d
µ (11)

seems to be the most natural counterpart of equation (10). This conjecture is obeyed very well
in d = 2 and d = 3, as we discuss later in section 4.

3. Numerical results

To determine the scaling exponents and other quantities as accurately as possible, in particular
those characterizing the PDF PS(�,N), an average over different starting points for the SAWs
is required to minimize the strong lattice effects typical of Sierpinski structures (see, e.g.,
[19, 23]). In the case of SAWs on Sierpinski triangular lattices, this averaging method leads
to results which compare very well with the values obtained using renormalization group
techniques; see table 1 (the quoted values therein are taken from [4, 5, 8–10, 18–20, 24–38]).
In the present case, the average is done over 16 starting points in d = 2 and 64 in d = 3,
corresponding to the lattice points of the initiator of the fractal (i.e., of the zeroth iteration step)
in both cases. The size of the actual fractal structure and the location of the starting points are
chosen such that the generated SAWs cannot reach the boundary (for details of the method
employed to guarantee this, see [19]). In what follows, the average over different starting
points will be indicated by the symbol 〈· · ·〉.

3.1. End-to-end chemical distance

The behaviour of the mean end-to-end chemical distance 〈�(N)〉 as a function of step length
N, obtained by exact enumeration of all walks up to N = 30 in d = 2 and up to N = 20 in
d = 3, is displayed in figure 2. The insets show the effective exponents νS(N), obtained from
the successive slopes d ln〈�(N)〉/d ln N , plotted as a function of 1/N . The numerical values
of νS are reported in table 1. It should be noted that the numerical values obtained for νS can
hardly be distinguished from the exact values known for the exponent ν for SAWs on regular
lattices. Previous investigations in d = 2 based on series expansion techniques for N � 18
reported νS = 0.80 ± 0.06 [15]. For consistency, we reanalyse the values of the average
square Euclidean end-to-end distance r2(N) given in [15], table IV, using the methods applied
here and estimate a somewhat smaller value νS = 0.77 ± 0.05, however consistent with both
the previously reported as well as our results. Note that for SAWs on some Sierpinski square
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Table 1. An overview of the critical exponents and other quantities for SAWs on various structures.
The column ‘regular sq/tr’ shows the values for regular square/triangular and simple cubic lattices
(note that the value for µ is non-universal and depends on the lattice type), ‘Sierpinski sq’ shows
the values for Sierpinski square lattices, ‘Sierpinski tr’ shows the values for Sierpinski triangular
lattices, whereas ‘percolation sq’ shows the values for the (square lattice) incipient percolation
cluster. Note that no sub/superscripts are given in the leftmost column, so that for example the
row ‘ν’ shows ν for regular lattices, νS for Sierpinski square lattices, ν′

S for Sierpinski triangular
lattices, and νr for the incipient percolation cluster (for the percolation cluster, the values of µ

and γ refer to the particular exact enumeration values µ1 and γ1 [8], whereas ν, g1 and g2 refer
to the exponents in the Euclidean metric, νr , g

r
1 and gr

2, respectively). Where exact values are
given, approximate numerical values are shown in square brackets to ease comparison. For the
fractal lattices shown in the three rightmost columns, where known, analytical estimates are given
in round brackets to allow an estimation of the accuracy of the numerical values.

Regular sq/tr Sierpinski sq Sierpinski tr Percolation sq

df 2D 2 ln 8/ln 3a [≈1.893] ln 3/ln 2b [≈1.585] 91/48c [≈1.896]
3D 3 ln 20/ln 3a [≈2.727] 2b 2.524 ± 0.008d

ν 2D 3/4e [=0.75] 0.75 ± 0.05 0.78 ± 0.03f (0.798g) 0.787 ± 0.010i

3D 7/12j [≈0.583] 0.58 ± 0.03 0.66 ± 0.04f (0.674h) 0.662 ± 0.006i

g1 2D 11/24k [≈0.458] 0.54 ± 0.03 0.44 ± 0.05f (0.47l) 0.55 ± 0.06i (0.54m)

3D 0.268k 0.16 ± 0.05 0.65 ± 0.08f (0.662l) 0.92 ± 0.08i (0.916m)

g2 2D 5/8n [=0.625] 1.41 ± 0.08 2.34 ± 0.10f 1.56 ± 0.20i

3D 0.255n 0.10 ± 0.05 2.6 ± 0.4f 2.6 ± 0.2i

δ 2D 4o 3.73 ± 0.30 (4p) 5.1 ± 0.2f (4.965p) 4.85 ± 0.20i (4.695p)

3D 12/5o [=2.4] 2.65 ± 0.50 (2.38p) 3.0 ± 0.3f (3.068p) 3.1 ± 0.2i (2.960p)

µ 2D sq 2.638 158 529 27 (1)q 2.515 ± 0.015 (2.499r) 1.565 ± 0.005i

2D tr 4.150 96 ± 0.000 36s 2.29 ± 0.01f (2.288 03t)

3D sq 4.684 04 ± 0.000 09u 4.26 ± 0.02 (4.258r) 1.462 ± 0.005i

3D tr 3.82 ± 0.02f (3.815v)

γ 2D 43/32w [=1.343 75] 1.23 ± 0.04 1.36 ± 0.03f (1.3752g) 1.34 ± 0.05i

3D 1.1575 ± 0.0006x 1.36 ± 0.03 1.42 ± 0.04f (1.4461y) 1.29 ± 0.05i

a Obtained by dS
f = ln (nd − k)/ ln n.

b Obtained by dS′
f = ln (d + 1)/ ln 2.

c [24, 25]. d [26]. e [4]. f [19]. g [27–30]. f [31–33]. h [8]. i [5]. j [9] and equation (6). k [19] and equation (8).
l [10] and equation (7). m [20]. n [18]. o Obtained by equation (5) and its analogues. p [34, 35]. q Obtained by
equation (11). s [36]. t [27–29]. u [37]. v [27]. w [25]. x [38]. y [30].

lattices in d = 2 characterized by low lacunarity, values for the end-to-end distance exponent
smaller than that for the regular square lattices have been reported [15].

3.2. Probability distribution function

Our aim in studying the PDF PS(�,N) for the end-to-end chemical distance, for fixed number
of steps N, is to estimate the exponents gS

1 and gS
2 in both d = 2 and d = 3. To minimize

spurious lattice effects, we study the mean distribution 〈PS(�,N)〉, averaged over different
starting points, as discussed above. The mean PDFs are shown in figure 3. For the Sierpinski
square lattices (as well as for other square lattices such as the regular one) one encounters the
additional difficulty that for SAWs of odd/even lengths N only odd/even end-to-end distances
� can occur due to the lattice topology. Therefore, figure 3 shows the results for both N = 29
and N = 30 in d = 2 and both N = 19 and N = 20 in d = 3. The results of the fits for gS

1 ,
using the asymptotic scaling form equation (4) for x � 1, are reported in table 1. The second
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Figure 2. Mean end-to-end chemical distance 〈�(N)〉 for SAWs on Sierpinski square lattices as
a function of the step length N, using exact enumeration of all walks in the cases: (a) d = 2 for
N � 30, averaged over 16 starting points, and (b) d = 3 for N � 20, averaged over 64 starting
points. The dashed lines display the present results, yielding νS = 0.75 (d = 2) and νS = 0.58
(d = 3). The insets show the successive slopes νS(N) ≡ d ln〈�(N)〉/d ln N plotted versus 1/N .

exponent gS
2 is determined by applying a somewhat more sensitive approach, as illustrated

in figure 4. The resulting values confirm those obtained directly from figure 3 and are also
reported in table 1.

3.3. Total number of SAW configurations

To determine the enhancement exponent γS and the effective coordination number µS of the
Sierpinski square lattices, we studied the total number 〈CN,S〉 of SAWs of N steps. The
behaviour expected from equation (9) is analysed in two different ways, as particularly an
accurate determination of γS requires a certain care. The first method consists in studying the
quantity 〈CN,S〉µ−N as a function of N, for different values of µ, as shown in figure 5. The
reported value µ = µS yields the ‘best’ power-law dependence of 〈CN,S〉µ−N versus N, for
large N. The second method consists in a direct fit of the function 〈CN,S〉 = ASµ

N
S NγS−1 in

the form

ln〈CN,S〉
N

= ln AS

N
+ ln µS + (γS − 1)

ln N

N
(12)

with suitable values of the fit parameters AS, γS and µS. The results are shown in figure 6.
Both methods yield consistent results and our final values for γS and µS are reported in
table 1. Previous investigations in d = 2 based on series expansion techniques for N � 18
reported µS = 2.502 ± 0.003 and γS = 1.35 ± 0.05 using a different method of analysis
[15]. For consistency, we reanalyse the values of SAW configurations given in [15], table
IV, using the methods applied here and estimate µS = 2.51 ±0.02 and a somewhat smaller
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Figure 3. The mean PDF 〈PS(�,N)〉 for the end-to-end chemical distance � for SAWs of a fixed
number of steps N, plotted as �〈PS(�,N)〉 versus �/NνS , in the cases: (a) d = 2 for N = 29
(circles) and 30 (diamonds) using νS = 0.75, as well as (b) d = 3 for N = 19 (circles) and
20 (diamonds) using νS = 0.58. The dashed lines represent fits of the data, in the regimes
� � NνS and � � NνS , according to equations (3) and (4). (Concerning gS

2 see figure 4.) A
more accurate determination of the exponent gS

1 is illustrated in the insets, where the quantity

�〈PS(�,N)〉/(�/NνS)d
S
f is plotted versus �/NνS . The exponent gS

1 is obtained from the slope of

the ansatz �〈PS(�,N)〉/(�/NνS )d
S
f ∼ (�/NνS )g

S
1 for � � NνS , yielding the results gS

1 = 0.54 in
d = 2 and gS

1 = 0.16 in d = 3.

γS = 1.28 ±0.05, which is however consistent with both the previously reported as well as our
results.

4. Discussion

According to the present results, it appears that SAWs on Sierpinski square lattices display a
kind of intermediate behaviour between SAWs on the corresponding regular and Sierpinski
triangular lattices (note that such a dependence on the type of underlying Sierpinski structure
is also observed for other models, such as Ising models [39]). We summarize our main points
as follows:

(i) Structural exponents: νS, g
S
1 and gS

2 . The exponents describing the structure of SAWs on
Sierpinski square lattices behave as their regular counterparts, i.e. νS and ν are merely
identical for both d = 2 and d = 3, and gS

1 and g1 as well as gS
2 and g2 show the same

trend (decrease) with increasing spatial dimension. Furthermore, in both cases the same
‘ordering’ of the exponents occurs: g1 < g2 and gS

1 < gS
2 for d = 2, but g1 > g2 and

gS
1 > gS

2 for d = 3. This has to be distinguished from the behaviour of the corresponding
exponents for SAWs on Sierpinski triangular lattices and on the incipient percolation
cluster. Here, νr and ν ′

S are both larger than ν, so that the fractal nature of the underlying
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Figure 4. The mean PDF 〈PS(�,N)〉 for the end-to-end chemical distance � for SAWs of fixed
number of steps N, replotting the data of figure 3, for the cases: (a) d = 2 and (b) d = 3,
analysed according to the method discussed in [8]. Plotted is the quantity Y(x) ≡
c
(gS

2 +dS
f )/δS

S C−1
S �〈PS(�,N)〉 exp[(c1/δS

S �/NνS )δS ] versus x ≡ c
1/δS
S �/NνS , which is expected to

scale as Y(x) ∼ xgS
2 +dS

f . We use δS = 3.73 and cS = 0.42 in d = 2, and δS = 2.65 and cS = 0.335
in d = 3 (CS is a constant related to the normalization of 〈PS(�,N)〉). The slopes of the dashed
lines represent the fitted values of gS

2 + dS
f , yielding the results gS

2 = 1.41 in d = 2 and gS
2 = 0.10

in d = 3. The insets show detailed plots to estimate the accuracy of the obtained values of

gS
2 . Plotted is the quantity y(x) ≡ − ln[C−1

S c
(gS

2 +dS
f )/δS

S �〈PS(�,N)〉(c1/δS
S �/NνS )−(gS

2 +dS
f )] versus

x ≡ c
1/δS
S �/NνS , which is expected to scale as y(x) ∼ xδS , for the values of gS

2 obtained above.
The slopes of the dashed lines represent the values of δS used above, and the continuous lines
represent the values of δS obtained by equation (5) using the results for νS obtained from figure 2.

lattice is strong enough to affect the spatial structure of the SAWs such that the scaling
behaviour changes. Correspondingly, gS′

1 and gr
1 as well as gS′

2 and gr
2 show the same

trend (increase) with increasing spatial dimension. Additionally, the same ‘ordering’ of
the exponents occurs: gr

1 < gr
2 and gS′

1 < gS′
2 for both d = 2 and d = 3.

(ii) Configuration space: µS and γS. The quantities describing the configuration space of
SAWs on Sierpinski square lattices behave similarly to their counterparts on Sierpinski
triangular lattices, i.e. µS and µ′

S increase much more slowly than µ for SAWs on regular
lattices; γS and γ ′

S counterbalance this slow increase and show the same trend (increase)
with increasing spatial dimension (suggesting the absence of an upper critical dimension in
both cases, see below). This has to be confronted with the behaviour of the corresponding
exponents for SAWs on regular lattices and on the incipient percolation cluster, for which
the values of γ and γ1 decrease with increasing spatial dimension, reaching the mean-
field value 1 at the upper critical dimension dc.4 However, this mean-field behaviour
occurs for different reasons. For regular lattices, γ = 1 for d = dc = 4, as the effect

4 Note, however, the interesting exact enumeration results for µ and γ of SAWs on a family of Sierpinski triangular
lattices which asymptotically approach the regular triangular lattice [40], and the subsequent comment [41].



8038 A Ordemann et al

101

102

C
N

S
µ

N

0 0.05 0.1

0.2

0.4

0.6

γ S
N

1

1 N

100 101

101

102

C
N

S
µ

N

N

0 0.05 0.1 0.15

0.2

0.4

0.6
γ S

N
1

1 N

b

a

Figure 5. Total number of SAWs of N steps 〈CN,S〉 on Sierpinski square lattices, plotted as
〈CN,S〉µ−N versus N in double-logarithmic form, for different values of µ. The value for µS
is obtained when 〈CN,S〉µ−N displays a satisfactory power law, and the associated slope yields
γS − 1. The plots correspond to: (a) d = 2, for µ = µS = 2.515 (circles), µ = 2.415 (diamonds)
and µ = 2.615 (squares). The dashed line is a fit yielding γS = 1.24. It is also obtained
from the successive slopes γS(N) − 1 ≡ d ln[〈CN,S〉µ−N

S ]/d ln N plotted versus 1/N in the inset.
(b) d = 3, µ = µS = 4.26 (circles), µ = 4.16 (diamonds) and µ = 4.36 (squares). The successive
slopes (inset) yield γS = 1.36, the value is represented by the dashed line.
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Figure 6. Total number of SAWs of N steps 〈CN,S〉 on Sierpinski square lattices, plotted as
ln〈CN,S〉/N versus N. The lines are fits using the form ln〈CN,S〉/N = (ln AS)/N + ln µS + [(γS −
1) ln N ]/N for N � 4, in d = 2 (circles) and d = 3 (squares). The resulting values for the fit
parameters are µS = 2.517, γS = 1.22 and AS = 1.7 in d = 2, and µS = 4.26, γS = 1.36 and
AS = 1.2 in d = 3, consistent with those obtained in figure 5.

of self-avoidance of SAWs becomes negligible at the upper critical dimension and SAWs
behave as standard random walks, for which γ = 1. For the incipient percolation
cluster, the underlying structure governing the behaviour of the SAWs, which is the
percolation backbone, gets less and less compact with increasing spatial dimension, and
the topological dimension dB

� of the backbone reaches the value dB
� = 1, characteristic

of a linear structure, at the upper critical dimension dc = 6. This linear character of
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the underlying structure makes the self-avoidance of SAWs irrelevant, so that here also
γ1 = 1. It seems that for SAWs on Sierpinski square and on Sierpinski triangular lattices,
none of these mean-field scenarios occur (see the further discussion concerning upper
critical dimensions in point (iv) below).

(iii) Conjecture: µS. Based on our results and on values reported previously [15], we propose
here relation (11), µS = µdf/d , between the coordination numbers µ and µS of SAWs
on regular square and Sierpinski square lattices, respectively. This relation is fulfilled
very accurately: inserting the numerical values summarized in table 1, one obtains
µdS

f

/
d = 2.499 in d = 2 and 4.258 in d = 3, which have to be compared to the

numerical values µS = 2.515 in d = 2 and 4.26 in d = 3 obtained from the data shown
in figures 5 and 6. Previous results for µS for other values of (n, k) in d = 2 [15]
are also in good accordance with equation (11) and suggest that the proposed relation
might hold generally for SAWs on Sierpinski square lattices. Nevertheless, it would be
helpful to explore the parameter space of (n, k) in more detail, in particular to study less
symmetric arrangements, to further support the conjecture equation (11) with more data.
Note that equation (11) holds in any case for the limit of regular square lattices obtained
by taking simultaneously n → ∞ and k → 0, as here dS

f (n → ∞, k → 0) → d and
µS(n → ∞, k → 0) → µ (when simultaneously n → ∞ and k → 0, in particular
the symmetric case studied here corresponds asymptotically to regular lattices [42]).
The important question whether equation (11) holds in identical or similar form also
for SAWs on other deterministic fractals is difficult to answer in general terms, as for
example in the case of the Sierpinski triangular lattices, there is no regular counterpart
of the fractal structure in d = 3 to compare with, and the fractal structure in d = 2
uses only at maximum four of six possible connections. Therefore, it is certainly
interesting to obtain µ for SAWs on other deterministic fractals which do have a regular
counterpart.

(iv) Generalized des Cloizeaux relation: gS
1 �= (γS − 1)/νS. Due to the intermediate or

competing behaviour of SAWs on Sierpinski square lattices sharing aspects of both
SAWs on ordered and fractal structures, a des Cloizeaux relation does not hold. One
obtains for the naive generalization (γS − 1)/νS the values 0.32 and 0.62 in d = 2 and
d = 3, respectively, which increase with spatial dimension d. These values have to be
compared to the present numerical results gS

1 = 0.54 and gS
1 = 0.16 in d = 2 and d = 3,

respectively, obtained from figure 3, which decrease with d. Although it is not clear why
this competing behaviour occurs, and whether and how the des Cloizeaux relation (6)
can be generalized to SAWs on Sierpinski square lattices, we note that the absence of a
des Cloizeaux relation might be due to a missing upper critical dimension dc for SAWs
on Sierpinski square lattices. This is suggested by the fact that γS increases with d.
However, an increasing γ ′

S with increasing spatial dimension d is also observed for SAWs
on Sierpinski triangular lattices [19], and hence the same argument of a missing upper
critical dimension also seems to hold true there. Note that in [43] it was predicted for the
latter that γ ′

S → 1.618 for d → ∞, which might indicate, on the other hand, the existence
of an upper critical dimension dc (although it might be that dc = ∞). Therefore, the
fact that a des Cloizeaux relation holds for SAWs on Sierpinski triangular lattices is not
conclusive. The problem whether upper critical dimensions exist might be addressed by
investigating the cases d � 4 for both Sierpinski triangular and square lattices, yet such
a numerical study is merely impossible with current computers; the values of N that one
can manage so far are much too small to give a definite answer.

A second possible direction of further investigation is the construction of deterministic
fractal structures which do have an upper critical dimension for SAWs on them. This might
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be achieved for instance by studying Sierpinski square lattices and varying the pair (n, k)

for various dimensions. One might expect that for large n and small k a ‘transition’ towards
SAWs on regular lattices occurs. As the latter case is characterized by the existence of an
upper critical dimension, one obtains deterministic fractal structures sharing this property.
An indication of this ‘transition’ will be that the dependence of γ on the spatial dimension
reverses from increasing with d to decreasing with d.

Acknowledgments

We benefitted from fruitful and stimulating discussions with S Havlin. AO gratefully
acknowledges financial support from the Alexander von Humboldt Foundation (Feodor Lynen
program).

References

[1] de Gennes P-G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
[2] Doi M and Edwards S F 1986 The Theory of Polymers Dynamics (Oxford: Clarendon)
[3] des Cloizeaux J and Jannink G 1990 Polymers in Solution: Their Modelling and Structure (Oxford: Clarendon)
[4] Flory P J 1949 J. Chem. Phys. 17 303
[5] Hueter I 2001 Preprint math.PR/0108120 submitted

For the case d = 2, see also Hueter I 2001 Preprint math. PR/0108077 submitted
[6] Barat K and Chakrabarti B K 1995 Phys. Rep. 28 377
[7] Ben-Avraham D and Havlin S 2000 Diffusion and Reactions in Fractals and Disordered Systems (Cambridge:

Cambridge University Press)
[8] Ordemann A, Porto M, Roman H E, Havlin S and Bunde A 2000 Phys. Rev. E 61 6858

For the case d = 2, see also Roman H E, Ordemann A, Porto M, Bunde A and Havlin S 1998 Phil. Mag. B 77
1357

[9] des Cloizeaux J 1974 Phys. Rev. A 10 1665
[10] Ordemann A, Porto M, Roman H E and Havlin S 2001 Phys. Rev. E 63 020104(R)
[11] Hughes B D 1995 Random Walks and Random Environments (Oxford: Clarendon)
[12] Chalub F A C C, Aarão Reis F D D and Riera R 1997 J. Phys. A: Math. Gen. 30 4151
[13] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco, CA: Freemann)
[14] Gefen Y, Aharony A and Mandelbrot B 1984 J. Phys. A: Math. Gen. 17 1277
[15] Aarão Reis F D D and Riera R 1983 J. Stat. Phys. 71 453
[16] Ben-Avraham D and Havlin S 1983 J. Phys. A: Math. Gen. 16 L559
[17] Taguchi Y-h 1988 J. Phys. A: Math. Gen. 21 1929
[18] Fisher M E 1966 J. Chem. Phys. 44 616
[19] Ordemann A, Porto M and Roman H E 2002 Phys. Rev. E 65 021107
[20] McKennzie D and Moore M 1971 J. Phys. A: Math. Gen. 4 L82
[21] Woo K Y and Lee S B 1991 Phys. Rev. A 44 999
[22] Grassberger P 1993 J. Phys. A: Math. Gen. 26 1023
[23] Acedo L and Yuste S B 2000 Phys. Rev. E 63 011105
[24] den Nijs M P M 1979 J. Phys. 12 1857
[25] Nienhuis B 1982 J. Phys. A: Math. Gen. 15 199
[26] Strenski P N, Bradley R M and Debierre J M 1991 Phys. Rev. Lett. 66 133
[27] Rammal R, Toulouse G and Vannimenus J 1984 J. Phys. (Paris) 45 389
[28] Klein D J and Seitz W A 1984 J. Phys. Lett. (Paris) 45 L241
[29] Kim D and Kahng B 1985 Phys. Rev. A 31 2309
[30] Dhar D 1978 J. Math. Phys. 19 5
[31] Hattori T and Kusuoka S 1992 Probab. Theory Relat. Fields 93 273
[32] Hattori K, Hattori T and Kusuoka S 1993 Publ. Res. Inst. Math. Sci. 29 455
[33] Hattori T and Nakajima H 1995 Phys. Rev. E 52 1202
[34] Guttmann A J and Wang J 1991 J. Phys. A: Math. Gen. 24 3107
[35] Jensen I and Guttmann A J 1999 J. Phys. A: Math. Gen. 32 4867
[36] Guttmann A J, Osborn T R and Sokal A D 1986 J. Phys. A: Math. Gen. 19 2591



Self-avoiding walks on self-similar structures: finite versus infinite ramification 8041

[37] McDonald D, Joseph S, Hunter D L, Mosely L L, Jan N and Guttmann A J 2002 J. Phys. A: Math. Gen. 35 1501
[38] Caracciolo S, Causo M S and Pelissetto A 1998 Phys. Rev. E 57 1215
[39] Carmona J M, Marconi U M B, Ruiz-Lorenzo J J and Tarancon A 1998 Phys. Rev. B 58 14387
[40] Riera R and Chalub F A C C 1998 Phys. Rev. E 58 4001
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